6/H-24 (vii) (Syllabus-2015)

2018

(April)

PHYSICS

(Honours)

(Condensed Matter Physics)

[PHY-07 (T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. (a) Find the Fermi energy of copper on the assumption that each copper atom contributes one free electron to the electron gas.

4

Density of copper is 8.94×10^3 kg/m³ $h = 6.63 \times 10^{-34}$ Js

Mass of the electron = $9 \cdot 11 \times 10^{-31}$ kg Atomic weight of copper = $63 \cdot 54$

	(b)	The primitive translation vectors of a two-	
		dimensional lattice are $\vec{a} = 2\hat{i} + \hat{j}$, $\vec{b} = 2\hat{j}$.	
		Determine the primitive translation	
		vectors of its reciprocal lattice.	1
	(c)	The resistivity of an intrinsic semiconductor is 4.5 ohm-m at 20 °C and 2.0 ohm-m at 32 °C. What is the energy band gap?	1
2.	(a)	Derive Maxwell's thermodynamical	
	()	general relations connecting the thermo-	
		dynamic quantities.	5
	(b)	Explain Joule-Thomson effect using the	
	(2)	Maxwell's thermodynamical relations.	5
		Explain Poisson's distribution. Obtain the distribution formula	
	oth	$P(x) = \frac{x^n}{n!}e^{-x}$ 1+5=6	5
	moj		
	(b)	Explain the concept of ensembles in statistical physics.	2
	(c)	Obtain the probability distribution for a canonical ensemble.	3
4.	(a)	Deduce an expression for the Fermi- Dirac distribution.	5

	(b)	State and prove the law of equipartition of energy.	4
	(c)	Explain what you understand by the term 'partition function'.	2
5.	(a)	What are point group and space group? Give their numbers for two- and three-dimensional lattices. List all the point groups of a two-dimensional lattice. 2+2+1-	
	(b)	What are Brillouin zones?	1
	(c)	Prove that fcc lattice is reciprocal to bcc lattice.	: 3
6.	(a)	Explain Madelung energy and Madelung constant in ionic crystals.	t +2=3
	(b)	Explain in detail Einstein's theory of lattice heat capacity.	f 6
	(c)	What do you mean by structure factor and atomic form factor?	+1=2
7.	(a)	Describe in detail Weiss theory of ferromagnetism.	f 6
	(b)	Distinguish beween dia-, para- and ferro- magnetic materials.	2
	(c)	Explain Hall effect.	2
	(d)	State Wiedemann-Franz law.	1

(Turn Over)

8.	(a)	Explain Meissner effect.	2
	(b)	Explain the difference between type I and type II superconductors using the Meissner effect.	4
	(c)	Give a qualitative description of the BCS theory. How does it account for the superconducting state? 2+1=	3
	(d)	Explain isotope effect.	2

elentroment directions

6/H-24 (viii) (Syllabus-2015)

2018

series extellected.

(April)

PHYSICS
(Honours)

(Atomic and Molecular Spectroscopy, Nuclear Physics)

[PHY-08(T)]

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer Question No. 1 and any four from the rest

1. (a) An element is placed in magnetic field of flux density 0.3 weber/m³. Calculate the Zeeman shift of a spectral line of wavelength 4500 Å.

3

(b)	The exciting line in an experiment is 2530 Å, a Raman line for a sample is observed at 2600 Å. Calculate the Raman shift in m ⁻¹ units.	3
(c)	Calculate the Q-value of the reaction $_{1}^{1}H^{3}(d,n)_{2}^{2}He^{4}$ in MeV.	
	mass of neutron = 1.0087 amu	
	mass of deuterium = 2.0141 amu	
	mass of tritium = 3.0160 amu	
	mass of helium = 4.0026 amu	3
(d)	A π^+ meson of rest mass 139.6 MeV decays at rest into a μ^+ meson rest mass 106 MeV and a neutrino. Calculate the kinetic energy of μ^+ meson.	3
(a)	What is space quantisation? Explain by drawing a suitable diagram. 1+6	=7
	Write down the values of quantum numbers l and s for a d -electron, and enumerate for it the possible values of the quantum numbers j and m_j .	4
Wa 7 45		
(a)	What is X-ray fluorescence (XRF)? Explain the basic principle of XRF.	
	Write the two useful applications of	
	XRF. 1+2+2	2=5

海	(b)	On the basis of quantum theory, derive	
		the energy levels of rigid body rotator. 6	
-	(a)	What is artificial transmutation? Explain with example. 1+3=4	
	(b)	What is β -decay? Explain the difficulties encountered to explain the continuous spectrum of β -decay. How were they overcome by Neutrino hypothesis? $1+3+3=7$	
5.	(a)	What are cosmic ray showers? 2	
	(b)	Explain with example, various conservation laws governing elementary particles.	
	(c)	The nucleus of an atom ⁹ Be ₄ consists	
		of how many up-quark and down-quark?	
6.	(a)	What are normal and anomalous Zeeman effects? 1+1=2	
	(b)	With the help of Zeeman effect, show	
		how you can determine the value of specific charge (e/m) of an electron.	3
	(c)	Explain what is Larmor's precession.	3
	(d)	Calculate the Landé g-factor for ³ P ₁	
		level of an atom.	3
			April 1

8D/1861

- 7. (a) What are magic numbers? How is the stability of nuclei explained on the basis of magic numbers?

 1+5=6
 - (b) Check if the following reactions are allowed or forbidden:
 - (i) $p = e^+ + \pi^0$ (ii) $\bar{p} + n = \pi^- + \pi^0$ $1\frac{1}{2} + 1\frac{1}{2} = 3$
 - (c) A μ meson collides with a proton; a neutron plus another particle are created. What is the other particle?
- 8. (a) What is Raman effect? Explain why
 Stokes lines are more intense than
 anti-Stokes lines.

 1+2=3
 - (b) In what respect Raman effect differs from Compton effect?
 - (c) State and explain Franck-Condon principle.

* * *

translation in topological and terminal comments.